


Verification of Ada 
Programs with AdaHorn

T.A. Beyene, C. Herrera and V. Nigam

Ada-Europe
24th International Conference on Reliable
Software Technologies

11-14 June 2019, Warsaw, Poland

13.06.19 Verification of Ada Programs with AdaHorn2



3

 translates Ada programs, together with properties encoded as
assertion, to a set of Constrainted Horn Clauses (CHCs)

 employs off-the-shelf solvers for CHCs to verify the generated
constraints and, consquently, to verify the original Ada program

 compares favourably with state of the art Ada verification
technologies, albeit for a subset of Ada programs and for a class of
properties that can be specified as assertions

AdaHorn

Verification of Ada Programs with AdaHorn13.06.19

An Ada verification tool based which uses ASIS-based Ada
compiler infrastructure as a frontend and horn constraints
solving technology as a backend.



13.06.194

 Model checking

• a verification technique, along with static analysis, deductive verification and theorem
proving, in formal methods - notably one of the most successful

• given a model of a system and a property to verify, model checking answers yes or no to
the question “does the model satisfy the property?”

 Ada model checking efforts

 2 approaches towards deveoping model checking tools

• model checking tools follow two main approaches:

• generate input models for existing model checkers

• design their own model checking algorithms, e.g., BLAST, SLAM

• Building a model checkers is a labout intensive effort, as can be seen with established tools

• tools like CBMC or Java Path-Finder have amassed countless person-months of
engineering and testing.

Motivation 
Model checking for Ada 

Verification of Ada Programs with AdaHorn



13.06.195

 over the recent years, this task has become a lot simpler with the increasing
availability of off-the-shelf front-ends (such as LLVM for c programs) and
verification back-ends (such as Z3 or Eldarica)

 with the increasing availability of such tools, the task of building a software
model checker becomes just a matter of

(1) picking a front-end and a back-end, and

(2) writing glue code to connect them

 Recent verification competitions have shown that this approach is feasible in 
practice. 

• The SeaHorn C verification framework, with LLVM front-end and off-the-shelf
verification back-end, was able to outperform established tools in many
categories. 

• The Java model checker JayHorn uses the Soot optimization framework as a 
front-end and a Horn contsraints solver as a backend. 

 Motivated by these developments, we have implemented AdaHorn, a software
model checking tool for Ada programs. 

Verification of Ada Programs with AdaHorn

Motivation
Three-step model checking technologies

SeaHorn (Gurfinkel et.al. CAV15 )

JayHorn (Kahsai et.al. CAV16 )



6

Architecture of AdaHorn

gnat2xml
CHC 

generation

…

GNAT compiler infrastructure
(FRONT END) glue code

CHC solver
(BACK END)

Verification of Ada Programs with AdaHorn13.06.19



7

Ada language subset

 current implementation does not support all language features and constructs
of Ada

 basic constructs of Ada that can be used to write programs of medium
complexity are supported.

(1) integer, floating-point and boolean data types, and self-defined ranges
over these types,

(2) arrays,

(3) assertions,

(4) while and for loops,

(5) procedures and functions (together with their corresponding calls), and

(6) if-then-else statements.

Verification of Ada Programs with AdaHorn13.06.19



8

 clause that has at most one positive occurrence of an uninterpreted predicate.

 fragment of first-order formulas modulo background theories, where its constraints are formulated using a given background theory.

 In this work, we assume the background theory be quantifier-free linear arithmetic.

Verification of Ada Programs with AdaHorn13.06.19

Constraint Generation
Contrained Horn Clauses (CHCs) 



13.06.199

 implemented by our glue code, the constraint generation procedure
is key contribution of this work

• employs gnat2xml utility from the GNAT compliler infrastructure
to generate an XML abstract syntax tree (AST) for a given Ada
program

• performs a top-down, recursive descent through the XML syntax
tree generating corresponding CHCs along the way

 two main considerations in this Ada to CHCs translation

(1) encoding program states, which are valuations of program
variables, at certain critical parts of the program such as loop
entry and exit, procedure/function call and return, etc.,

(2) encoding state transitions that occur during the execution of
the program by translating involved Ada constructs into their
corresponding CHC.

Verification of Ada Programs with AdaHorn

Constraint Generation



10

(1) Project file

(3) Implementation file

(2) Specification file

Verification of Ada Programs with AdaHorn13.06.19

Constraint Generation
Example Ada program



11 Verification of Ada Programs with AdaHorn13.06.19

Constraint Generation
Generated CHCs 



12 Verification of Ada Programs with AdaHorn13.06.19

(1) Project file

(3) Implementation file

(2) Specification file

Constraint Generation
Generated CHCs 



13 Verification of Ada Programs with AdaHorn13.06.19

(1) Project file

(3) Implementation file

(2) Specification file

Constraint Generation
Generated CHCs 



14 Verification of Ada Programs with AdaHorn13.06.19

(1) Project file

(3) Implementation file

(2) Specification file

Constraint Generation
Generated CHCs 



15 Verification of Ada Programs with AdaHorn13.06.19

(1) Project file

(3) Implementation file

(2) Specification file

Constraint Generation
Generated CHCs 



13.06.1916

 Generated constriant is solved using an off-the-shelf solver for horn constrains

Verification of Ada Programs with AdaHorn

…

Constraint Solving



17

Evaluation
Experimental setup

 compare with GNATProve

 propose and uses Ada benchmarks inspired by C programs from the competition SV-COMP 2017

• at most 60 lines of code each

• classifies into four categories: Arrays, Floats, Loops, and RT-Properties

• selected benchmarks expressible in our subset of Ada

 Given an Ada program with an assertion, the verification tools are tasked with

(1) proving the assertion occurring is valid, in which case the tools should return SAT, or

(2) demonstrating the assertion is not valid, i.e., it is possible to violate it, in which case the tools should return UNSAT.

 Comparing the expected result and the actual result, the results of our experiments are classified into the following four
categories: TP, TN, FP, and FN.

• in addition, Unknown and Timout results are also possible

Verification of Ada Programs with AdaHorn13.06.19



18

Evaluation
Experimental result

 GNATProve verifies each benchmark within 3 seconds

• correct results only for 17 cases

• outputs 48 false positives and 2 false negatives!

 following obervations can explain these outputs

• GNATProve performs intermediate checks before checking
assertions, and GNATProve assumes previous checks have been
successful.

• succesive checks are not analyzed by GNATProve after previous
check has failed (see Paragraph 7.3.4 in [22]).

• the analysis can be improved by adding manual annotations to
the program (this is call “direct justification” [22]). 

Verification of Ada Programs with AdaHorn13.06.19

 AdaHorn verifies each benchmark within 60 seconds

• correct results for 59 cases and no false negative

• 4 false positives, 4 unknown and 1 timeout (use
floating-point data types )

 AdaHorn over-approximates floats with reals for
performance purposes of the used solvers, and it looks to
lead to numerical precision differences with the Ada
compiler.



Thank you.

19

Questions?

Verification of Ada Programs with AdaHorn13.06.19



Contact

fortiss GmbH
An-Institut Technische Universität München
Guerickestraße 25 · 80805 München · Germany

tel +49 89 3603522 24 fax +49 89 3603522 50

beyene@fortiss.org
www.fortiss.org

Dr. Tewodros A. Beyene

20 Verification of Ada Programs with AdaHorn13.06.19

mailto:beyene@fortiss.org
http://www.fortiss.org/


©2019

This presentation was created by fortiss.
It is for presentation determined only and strictly confidential.
The distribution of the presentation to our partners includes
no transfer of ownership or usage rights.
A transfer to third parties is not permitted.

21 Verification of Ada Programs with AdaHorn13.06.19


